metabelian, supersoluble, monomial
Aliases: Dic6⋊1S3, C6.14D12, C12.13D6, C32⋊5SD16, C3⋊C8⋊3S3, C4.3S32, (C3×C6).10D4, C3⋊2(C24⋊C2), (C3×Dic6)⋊2C2, C6.3(C3⋊D4), C12⋊S3.2C2, C3⋊1(Q8⋊2S3), (C3×C12).5C22, C2.6(C3⋊D12), (C3×C3⋊C8)⋊3C2, SmallGroup(144,60)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C32⋊5SD16
G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, cac-1=dad=a-1, bc=cb, dbd=b-1, dcd=c3 >
Character table of C32⋊5SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 36 | 2 | 2 | 4 | 2 | 12 | 2 | 2 | 4 | 6 | 6 | 2 | 2 | 4 | 4 | 4 | 12 | 12 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -1 | 2 | -1 | 2 | -2 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 0 | 2 | -1 | -1 | 2 | 0 | 2 | -1 | -1 | -2 | -2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 0 | -1 | 2 | -1 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 2 | -1 | -1 | 2 | 0 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | -2 | 1 | 1 | 0 | 0 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ11 | 2 | 2 | 0 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | -2 | 1 | 1 | 0 | 0 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ12 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ13 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ14 | 2 | 2 | 0 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | 0 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | -√-2 | √-2 | -√3 | √3 | 0 | √3 | -√3 | 0 | 0 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ83ζ32+ζ8ζ32+ζ8 | complex lifted from C24⋊C2 |
ρ17 | 2 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | √-2 | -√-2 | √3 | -√3 | 0 | -√3 | √3 | 0 | 0 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ87ζ3+ζ85ζ3+ζ85 | complex lifted from C24⋊C2 |
ρ18 | 2 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | √-2 | -√-2 | -√3 | √3 | 0 | √3 | -√3 | 0 | 0 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ83ζ3+ζ8ζ3+ζ8 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ87ζ32+ζ85ζ32+ζ85 | complex lifted from C24⋊C2 |
ρ19 | 2 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | -√-2 | √-2 | √3 | -√3 | 0 | -√3 | √3 | 0 | 0 | -ζ87ζ3+ζ85ζ3+ζ85 | -ζ87ζ32+ζ85ζ32+ζ85 | -ζ83ζ32+ζ8ζ32+ζ8 | -ζ83ζ3+ζ8ζ3+ζ8 | complex lifted from C24⋊C2 |
ρ20 | 4 | -4 | 0 | -2 | 4 | -2 | 0 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ21 | 4 | 4 | 0 | -2 | -2 | 1 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ22 | 4 | 4 | 0 | -2 | -2 | 1 | 4 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ23 | 4 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | -2√3 | 2√3 | 0 | -√3 | √3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 4 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 2√3 | -2√3 | 0 | √3 | -√3 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 13 19)(2 20 14)(3 15 21)(4 22 16)(5 9 23)(6 24 10)(7 11 17)(8 18 12)
(1 13 19)(2 14 20)(3 15 21)(4 16 22)(5 9 23)(6 10 24)(7 11 17)(8 12 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 3)(2 6)(5 7)(9 17)(10 20)(11 23)(12 18)(13 21)(14 24)(15 19)(16 22)
G:=sub<Sym(24)| (1,13,19)(2,20,14)(3,15,21)(4,22,16)(5,9,23)(6,24,10)(7,11,17)(8,18,12), (1,13,19)(2,14,20)(3,15,21)(4,16,22)(5,9,23)(6,10,24)(7,11,17)(8,12,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,3)(2,6)(5,7)(9,17)(10,20)(11,23)(12,18)(13,21)(14,24)(15,19)(16,22)>;
G:=Group( (1,13,19)(2,20,14)(3,15,21)(4,22,16)(5,9,23)(6,24,10)(7,11,17)(8,18,12), (1,13,19)(2,14,20)(3,15,21)(4,16,22)(5,9,23)(6,10,24)(7,11,17)(8,12,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,3)(2,6)(5,7)(9,17)(10,20)(11,23)(12,18)(13,21)(14,24)(15,19)(16,22) );
G=PermutationGroup([[(1,13,19),(2,20,14),(3,15,21),(4,22,16),(5,9,23),(6,24,10),(7,11,17),(8,18,12)], [(1,13,19),(2,14,20),(3,15,21),(4,16,22),(5,9,23),(6,10,24),(7,11,17),(8,12,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,3),(2,6),(5,7),(9,17),(10,20),(11,23),(12,18),(13,21),(14,24),(15,19),(16,22)]])
G:=TransitiveGroup(24,233);
C32⋊5SD16 is a maximal subgroup of
S3×C24⋊C2 C24⋊1D6 Dic12⋊S3 D6.3D12 D12⋊18D6 D12.27D6 Dic6.29D6 Dic6⋊3D6 Dic6⋊D6 Dic6.20D6 D12⋊5D6 S3×Q8⋊2S3 Dic6.10D6 Dic6.22D6 D12.14D6 C6.D36 C18.D12 He3⋊3SD16 He3⋊5SD16 C33⋊15SD16 C33⋊17SD16 C33⋊18SD16
C32⋊5SD16 is a maximal quotient of
C6.17D24 C6.Dic12 C12.Dic6 C6.D36 C18.D12 He3⋊4SD16 C33⋊15SD16 C33⋊17SD16 C33⋊18SD16
Matrix representation of C32⋊5SD16 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
6 | 6 | 0 | 0 | 0 | 0 |
67 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,67,0,0,0,0,6,6,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;
C32⋊5SD16 in GAP, Magma, Sage, TeX
C_3^2\rtimes_5{\rm SD}_{16}
% in TeX
G:=Group("C3^2:5SD16");
// GroupNames label
G:=SmallGroup(144,60);
// by ID
G=gap.SmallGroup(144,60);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,73,31,218,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^3>;
// generators/relations
Export
Subgroup lattice of C32⋊5SD16 in TeX
Character table of C32⋊5SD16 in TeX